SCHUYLER BUSINESS PARK STORMWATER ANALYSIS

INTRODUCTION

This report is written to determine the changes in storm water runoff from pre to post developed conditions for the development of 3 industrial / manufacturing parcel in the Town of Whitestown, Oneida County NY. This document can be used in the development of Storm Water Pollution Prevention Plans the follow the guidelines set forth in New York State Dept. of Environmental Conservation SPDES General Permit for Storm Water Discharges from Construction Activities Phase II, Permit No. GP-0-20-002, Dated: January 2020.

I. PROJECT DESCRIPTION

A. BACKGROUND INFORMATION

This project consists of the subdivision and development of a 245,000 sf building with 150,000sf expansion with associated site amenities on a 20ac parcel on Judd Rd.

SOILS (refer to the Soils map in Appendix I)
Soil survey report is attached. Soils present on the site are a Conesus silt loam 3 to 8 percent slopes. Depth to restrictive layer is approximately 6.5ft and depth to water table is 18 to 24 inches. Infiltration practices may not be appropriate for this site given the anticipated shallow ground water. Infiltration tests should be performed for the next phase of development.

II. EXISTING (PRE-DEVELOPED) CONDITIONS

Presently the property is an open field with areas of mature trees. Topography generally runs from South to North at 3 to 8 % slopes with steeper mounds in the North corner and along Judd Rd. See Calculations in Appendix II

III. PROPOSED CONDITIONS

The property will be developed for manufacturing or distribution center. Total increase in impervious on the entire property which includes buildings and paving is approximately 12.7 Ac. Increase in impervious coverage over a site generates a large increase in runoff as shown in the chart below and in calculations in appendix II.

Mitigation: The increase in stormwater runoff will be mitigated using storm water detention ponds and where appropriate underground infiltration practices. Using green infrastructure practices such as dryswales will also help meet the NYSDEC design guideline requirements.

B. CALCULATIONS

1. Curve Numbers: See Appendix II for HydroCAD Report
2. Pre and Post calculations- refer to Appendix II for detailed Calculations and
printouts. Below is a summary table.

Table 1: Pre-Development Calculations (in cfs)

<table>
<thead>
<tr>
<th>STORM EVENT</th>
<th>1 YR.</th>
<th>10 YR.</th>
<th>100 YR.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed 1</td>
<td>0.27</td>
<td>5.63</td>
<td>25.90</td>
</tr>
</tbody>
</table>

Table 2: Post-Development Calculations (in cfs)

<table>
<thead>
<tr>
<th>STORM EVENT</th>
<th>1 YR.</th>
<th>10 YR.</th>
<th>100 YR.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed 1</td>
<td>26.89</td>
<td>61.0</td>
<td>122.70</td>
</tr>
<tr>
<td>Increase from Pre W1</td>
<td>26.62</td>
<td>55.37</td>
<td>96.80</td>
</tr>
</tbody>
</table>
APPENDICES
APPENDIX I

- Soil Report
Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.
Contents

Preface ... 2
How Soil Surveys Are Made ... 5
Soil Map .. 8
 Soil Map .. 9
Legend .. 10
Map Unit Legend .. 11
Map Unit Descriptions ... 11
 Oneida County, New York ... 13
 22—Udorthents, smoothed .. 13
 115B—Chadakoin silt loam, 3 to 8 percent slopes .. 14
 115C—Chadakoin silt loam, 8 to 15 percent slopes .. 16
 136A—Kendaia silt loam, 0 to 3 percent slopes ... 17
 136B—Kendaia silt loam, 3 to 8 percent slopes .. 19
 146—Lyons soils, 0 to 3 percent slopes ... 20
 790B—Conesus silt loam, 3 to 8 percent slopes .. 23
References .. 26
How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and
identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.
Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.
The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service
Web Soil Survey URL: [Web Soil Survey](https://soils.usda.gov/)
Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Oneida County, New York
Survey Area Data: Version 20, Sep 3, 2018

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Nov 3, 2013—Sep 27, 2016

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Map Unit Legend

<table>
<thead>
<tr>
<th>Map Unit Symbol</th>
<th>Map Unit Name</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Udorthents, smoothed</td>
<td>17.6</td>
<td>10.2%</td>
</tr>
<tr>
<td>115B</td>
<td>Chadakoin silt loam, 3 to 8 percent slopes</td>
<td>1.8</td>
<td>1.0%</td>
</tr>
<tr>
<td>115C</td>
<td>Chadakoin silt loam, 8 to 15 percent slopes</td>
<td>13.2</td>
<td>7.7%</td>
</tr>
<tr>
<td>136A</td>
<td>Kendaia silt loam, 0 to 3 percent slopes</td>
<td>9.9</td>
<td>5.7%</td>
</tr>
<tr>
<td>136B</td>
<td>Kendaia silt loam, 3 to 8 percent slopes</td>
<td>82.2</td>
<td>47.6%</td>
</tr>
<tr>
<td>146</td>
<td>Lyons soils, 0 to 3 percent slopes</td>
<td>0.6</td>
<td>0.4%</td>
</tr>
<tr>
<td>790B</td>
<td>Conesus silt loam, 3 to 8 percent slopes</td>
<td>47.2</td>
<td>27.4%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td>172.6</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor
components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.
Oneida County, New York

22—Udorthents, smoothed

Map Unit Setting

National map unit symbol: 9v8n
Elevation: 300 to 1,200 feet
Mean annual precipitation: 30 to 45 inches
Mean annual air temperature: 45 to 50 degrees F
Frost-free period: 120 to 160 days
Farmland classification: Not prime farmland

Map Unit Composition

Udorthents, smoothed, and similar soils: 75 percent
Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the map unit.

Description of Udorthents, Smoothed

Typical profile

H1 - 0 to 6 inches: gravelly loam
H2 - 6 to 72 inches: gravelly sandy loam

Properties and qualities

Slope: 0 to 15 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Moderately well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (0.57 to 19.98 in/hr)
Depth to water table: About 36 to 72 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 5 percent
Available water storage in profile: Low (about 5.4 inches)

Minor Components

Udorthents, wet substratum

Percent of map unit: 6 percent
Hydric soil rating: No

Urban land

Percent of map unit: 4 percent
Hydric soil rating: No

Alton

Percent of map unit: 3 percent
Hydric soil rating: No

Chenango

Percent of map unit: 3 percent
Hydric soil rating: No

Wakeville

Percent of map unit: 3 percent
Landform: Depressions
Hydric soil rating: No

Lamson
Percent of map unit: 2 percent
Landform: Depressions
Hydric soil rating: Yes

Wayland
Percent of map unit: 1 percent
Landform: Flood plains
Hydric soil rating: Yes

Otego
Percent of map unit: 1 percent
Landform: Depressions
Hydric soil rating: No

Hamlin
Percent of map unit: 1 percent
Landform: Depressions
Hydric soil rating: No

Canandaigua
Percent of map unit: 1 percent
Landform: Depressions
Hydric soil rating: Yes

115B—Chadakoin silt loam, 3 to 8 percent slopes

Map Unit Setting
National map unit symbol: 9v6n
Elevation: 800 to 1,000 feet
Mean annual precipitation: 30 to 45 inches
Mean annual air temperature: 45 to 48 degrees F
Frost-free period: 110 to 150 days
Farmland classification: All areas are prime farmland

Map Unit Composition
Chadakoin and similar soils: 75 percent
Minor components: 25 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Chadakoin

Setting
Landform: Drumlinoid ridges, hills, till plains
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Crest
Down-slope shape: Convex
Across-slope shape: Convex
Parent material: Loamy till derived from siltstone, sandstone, and smaller amounts of shale
Typical profile
- **Oa** - 0 to 1 inches: highly decomposed plant material
- **A** - 1 to 6 inches: silt loam
- **Bw1** - 6 to 10 inches: silt loam
- **Bw2** - 10 to 27 inches: channery silt loam
- **Bw3** - 27 to 32 inches: channery silt loam
- **BC** - 32 to 43 inches: channery loam
- **CB** - 43 to 60 inches: very channery loam
- **C** - 60 to 72 inches: very channery silt loam

Properties and qualities
- **Slope**: 3 to 8 percent
- **Depth to restrictive feature**: More than 80 inches
- **Natural drainage class**: Well drained
- **Runoff class**: Medium
- **Capacity of the most limiting layer to transmit water (Ksat)**: Moderately high to high (0.20 to 1.98 in/hr)
- **Depth to water table**: About 42 to 72 inches
- **Frequency of flooding**: None
- **Frequency of ponding**: None
- **Available water storage in profile**: Moderate (about 7.0 inches)

Interpretive groups
- **Land capability classification (irrigated)**: None specified
- **Land capability classification (nonirrigated)**: 2e
- **Hydrologic Soil Group**: B
- **Hydric soil rating**: No

Minor Components
- **Mardin**
 - **Percent of map unit**: 6 percent
 - **Hydric soil rating**: No
- **Pittsfield**
 - **Percent of map unit**: 6 percent
 - **Hydric soil rating**: No
- **Unnamed soils**
 - **Percent of map unit**: 5 percent
 - **Hydric soil rating**: No
- **Manlius**
 - **Percent of map unit**: 5 percent
 - **Hydric soil rating**: No
- **Venango**
 - **Percent of map unit**: 3 percent
 - **Hydric soil rating**: No
115C—Chadakoin silt loam, 8 to 15 percent slopes

Map Unit Setting
- National map unit symbol: 9v6p
- Elevation: 800 to 1,000 feet
- Mean annual precipitation: 30 to 45 inches
- Mean annual air temperature: 45 to 48 degrees F
- Frost-free period: 110 to 150 days
- Farmland classification: Farmland of statewide importance

Map Unit Composition
- Chadakoin and similar soils: 80 percent
- Minor components: 20 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Chadakoin

Setting
- Landform: Drumlinoid ridges, hills, till plains
- Landform position (two-dimensional): Shoulder
- Landform position (three-dimensional): Crest
- Down-slope shape: Convex
- Across-slope shape: Convex
- Parent material: Loamy till derived from siltstone, sandstone, and smaller amounts of shale

Typical profile
- Oa - 0 to 1 inches: highly decomposed plant material
- A - 1 to 6 inches: silt loam
- Bw1 - 6 to 10 inches: silt loam
- Bw2 - 10 to 27 inches: channery silt loam
- Bw3 - 27 to 32 inches: channery silt loam
- BC - 32 to 43 inches: channery loam
- CB - 43 to 60 inches: very channery loam
- C - 60 to 72 inches: very channery silt loam

Properties and qualities
- Slope: 8 to 15 percent
- Depth to restrictive feature: More than 80 inches
- Natural drainage class: Well drained
- Runoff class: Medium
- Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 1.98 in/hr)
- Depth to water table: About 42 to 72 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water storage in profile: Moderate (about 7.0 inches)

Interpretive groups
- Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3e
Hydrologic Soil Group: B
Hydric soil rating: No

Minor Components

Mardin
Percent of map unit: 5 percent
Hydric soil rating: No

Manlius
Percent of map unit: 4 percent
Hydric soil rating: No

Pittsfield
Percent of map unit: 4 percent
Hydric soil rating: No

Unnamed soils
Percent of map unit: 4 percent
Hydric soil rating: No

Venango
Percent of map unit: 3 percent
Hydric soil rating: No

136A—Kendaia silt loam, 0 to 3 percent slopes

Map Unit Setting
National map unit symbol: 2w5j0
Elevation: 460 to 1,640 feet
Mean annual precipitation: 31 to 57 inches
Mean annual air temperature: 41 to 50 degrees F
Frost-free period: 100 to 190 days
Farmland classification: Prime farmland if drained

Map Unit Composition
Kendaia and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the map unit.

Description of Kendaia

Setting
Landform: Drumlins, ridges, till plains
Landform position (two-dimensional): Footslope
Landform position (three-dimensional): Base slope
Down-slope shape: Concave
Across-slope shape: Linear
Parent material: Calcareous loamy lodgment till derived from limestone, sandstone, and shale
Typical profile

- **Ap - 0 to 8 inches:** silt loam
- **Bw - 8 to 15 inches:** silt loam
- **Bg - 15 to 20 inches:** gravelly silt loam
- **BCg - 20 to 24 inches:** gravelly loam
- **C - 24 to 79 inches:** gravelly loam

Properties and qualities

- **Slope:** 0 to 3 percent
- **Depth to restrictive feature:** More than 80 inches
- **Natural drainage class:** Somewhat poorly drained
- **Runoff class:** Very high
- **Capacity of the most limiting layer to transmit water (Ksat):** Very low to moderately high (0.00 to 1.42 in/hr)
- **Depth to water table:** About 6 to 18 inches
- **Frequency of flooding:** None
- **Frequency of ponding:** None
- **Calcium carbonate, maximum in profile:** 40 percent
- **Available water storage in profile:** Moderate (about 7.8 inches)

Interpretive groups

- **Land capability classification (irrigated):** None specified
- **Land capability classification (nonirrigated):** 3w
- **Hydrologic Soil Group:** B/D
- **Hydric soil rating:** No

Minor Components

- **Lima**
 - **Percent of map unit:** 6 percent
 - **Landform:** Drumlins, till plains
 - **Landform position (two-dimensional):** Summit
 - **Landform position (three-dimensional):** Crest
 - **Down-slope shape:** Convex
 - **Across-slope shape:** Convex
 - **Hydric soil rating:** No

- **Lyons**
 - **Percent of map unit:** 5 percent
 - **Landform:** Depressions, drainageways
 - **Landform position (two-dimensional):** Toeslope
 - **Landform position (three-dimensional):** Base slope
 - **Down-slope shape:** Concave
 - **Across-slope shape:** Concave
 - **Hydric soil rating:** Yes

- **Churchville**
 - **Percent of map unit:** 2 percent
 - **Landform:** Lake plains, till plains
 - **Landform position (two-dimensional):** Footslope
 - **Landform position (three-dimensional):** Base slope, rise, talf
 - **Down-slope shape:** Concave
 - **Across-slope shape:** Linear
 - **Hydric soil rating:** No

- **Ovid**
 - **Percent of map unit:** 2 percent
Landform: Reworked lake plains, till plains
Landform position (two-dimensional): Footslope
Landform position (three-dimensional): Base slope
Down-slope shape: Concave
Across-slope shape: Linear
Hydric soil rating: No

136B—Kendaia silt loam, 3 to 8 percent slopes

Map Unit Setting

- **National map unit symbol:** 2w5j4
- **Elevation:** 430 to 1,610 feet
- **Mean annual precipitation:** 31 to 57 inches
- **Mean annual air temperature:** 41 to 50 degrees F
- **Frost-free period:** 100 to 190 days
- **Farmland classification:** Prime farmland if drained

Map Unit Composition

- **Kendaia and similar soils:** 85 percent
- **Minor components:** 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kendaia

Setting

- **Landform:** Drumlins, ridges, till plains
- **Landform position (two-dimensional):** Footslope
- **Landform position (three-dimensional):** Base slope
- **Down-slope shape:** Concave
- **Across-slope shape:** Linear
- **Parent material:** Calcareous loamy lodgment till derived from limestone, sandstone, and shale

Typical profile

- **Ap - 0 to 8 inches:** silt loam
- **Bw - 8 to 15 inches:** silt loam
- **Bg - 15 to 20 inches:** gravelly silt loam
- **BCg - 20 to 24 inches:** gravelly loam
- **C - 24 to 79 inches:** gravelly loam

Properties and qualities

- **Slope:** 3 to 8 percent
- **Depth to restrictive feature:** More than 80 inches
- **Natural drainage class:** Somewhat poorly drained
- **Runoff class:** Very high
- **Capacity of the most limiting layer to transmit water (Ksat):** Very low to moderately high (0.00 to 1.42 in/hr)
- **Depth to water table:** About 6 to 18 inches
- **Frequency of flooding:** None
- **Frequency of ponding:** None
Calcium carbonate, maximum in profile: 40 percent
Available water storage in profile: Moderate (about 7.8 inches)

Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3w
Hydrologic Soil Group: B/D
Hydric soil rating: No

Minor Components
Lima
Percent of map unit: 7 percent
Landform: Drumlins, till plains
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Crest
Down-slope shape: Convex
Across-slope shape: Convex
Hydric soil rating: No

Lyons
Percent of map unit: 4 percent
Landform: Depressions, drainageways
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Base slope
Down-slope shape: Concave
Across-slope shape: Concave
Hydric soil rating: Yes

Churchville
Percent of map unit: 2 percent
Landform: Lake plains, till plains
Landform position (two-dimensional): Footslope
Landform position (three-dimensional): Base slope, rise, talf
Down-slope shape: Concave
Across-slope shape: Linear
Hydric soil rating: No

Ovid
Percent of map unit: 2 percent
Landform: Reworked lake plains, till plains
Landform position (two-dimensional): Footslope
Landform position (three-dimensional): Base slope
Down-slope shape: Concave
Across-slope shape: Linear
Hydric soil rating: No

146—Lyons soils, 0 to 3 percent slopes

Map Unit Setting
National map unit symbol: 2spjy
Elevation: 250 to 1,900 feet
Mean annual precipitation: 31 to 57 inches
Mean annual air temperature: 41 to 50 degrees F
Frost-free period: 100 to 190 days
Farmland classification: Not prime farmland

Map Unit Composition
Lyons and similar soils: 75 percent
Lyons, frequently ponded, and similar soils: 15 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Lyons

Setting
Landform: Depressions, drainageways
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Base slope
Down-slope shape: Concave
Across-slope shape: Concave
Parent material: Calcareous loamy lodgment till derived from limestone and shale

Typical profile
Ap - 0 to 10 inches: silt loam
Bg1 - 10 to 19 inches: silt loam
Bg2 - 19 to 25 inches: silty clay loam
BCg - 25 to 34 inches: gravelly silt loam
C - 34 to 79 inches: gravelly loam

Properties and qualities
Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 1.42 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 40 percent
Available water storage in profile: Moderate (about 8.9 inches)

Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 5w
Hydrologic Soil Group: C/D
Hydric soil rating: Yes

Description of Lyons, Frequently Ponded

Setting
Landform: Depressions, drainageways
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Base slope
Down-slope shape: Concave
Across-slope shape: Concave
Parent material: Calcareous loamy lodgment till derived from limestone and shale
Typical profile

Ap - 0 to 10 inches: mucky silt loam
Bg1 - 10 to 19 inches: silt loam
Bg2 - 19 to 25 inches: silty clay loam
BCg - 25 to 34 inches: gravelly silt loam
C - 34 to 79 inches: gravelly loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 1.42 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Calcium carbonate, maximum in profile: 40 percent
Available water storage in profile: High (about 9.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 5w
Hydrologic Soil Group: C/D
Hydric soil rating: Yes

Minor Components

Appleton
Percent of map unit: 3 percent
Landform: Drumlins, till plains
Landform position (two-dimensional): Footslope
Landform position (three-dimensional): Base slope
Down-slope shape: Concave
Across-slope shape: Linear
Hydric soil rating: No

Canandaigua
Percent of map unit: 3 percent
Landform: Depressions
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Tread
Down-slope shape: Concave
Across-slope shape: Concave
Hydric soil rating: Yes

Kendaia
Percent of map unit: 2 percent
Landform: Drumlins, till plains
Landform position (two-dimensional): Footslope
Landform position (three-dimensional): Base slope
Down-slope shape: Concave
Across-slope shape: Linear
Hydric soil rating: No

Palms
Percent of map unit: 1 percent
Landform: Swamps, marshes
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Talf
Down-slope shape: Concave
Across-slope shape: Concave
Hydric soil rating: Yes

Ilion
Percent of map unit: 1 percent
Landform: Depressions
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Base slope
Down-slope shape: Concave
Across-slope shape: Concave
Hydric soil rating: Yes

790B—Conesus silt loam, 3 to 8 percent slopes

Map Unit Setting
National map unit symbol: 2w3jl
Elevation: 390 to 1,970 feet
Mean annual precipitation: 31 to 57 inches
Mean annual air temperature: 41 to 50 degrees F
Frost-free period: 100 to 190 days
Farmland classification: All areas are prime farmland

Map Unit Composition
Conesus and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Conesus

Setting
Landform: Drumlins, hills, till plains
Landform position (two-dimensional): Summit, shoulder
Landform position (three-dimensional): Crest
Down-slope shape: Linear
Across-slope shape: Convex
Parent material: Calcareous loamy lodgment till derived from limestone, sandstone, and shale

Typical profile
Ap - 0 to 9 inches: silt loam
E/B - 9 to 14 inches: gravelly silt loam
Bt/E - 14 to 19 inches: gravelly silt loam
Bt1 - 19 to 25 inches: gravelly silt loam
Bt2 - 25 to 36 inches: gravelly silt loam
C - 36 to 79 inches: gravelly loam
Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Moderately well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.01 to 1.42 in/hr)
Depth to water table: About 18 to 24 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 40 percent
Available water storage in profile: Moderate (about 7.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 2e
Hydrologic Soil Group: B/D
Hydric soil rating: No

Minor Components

Lansing
Percent of map unit: 7 percent
Landform: Drumlins, hills, till plains
Landform position (two-dimensional): Summit, shoulder, backslope
Landform position (three-dimensional): Crest, side slope
Down-slope shape: Convex
Across-slope shape: Convex
Hydric soil rating: No

Kendaia
Percent of map unit: 3 percent
Landform: Drumlins, till plains
Landform position (two-dimensional): Footslope
Landform position (three-dimensional): Base slope
Down-slope shape: Concave
Across-slope shape: Linear
Hydric soil rating: No

Nunda
Percent of map unit: 2 percent
Landform: Drumlinoid ridges, hills
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Crest
Down-slope shape: Concave
Across-slope shape: Convex
Hydric soil rating: No

Appleton
Percent of map unit: 2 percent
Landform: Drumlins, till plains
Landform position (two-dimensional): Footslope
Landform position (three-dimensional): Base slope
Down-slope shape: Concave
Across-slope shape: Linear
Hydric soil rating: No
Lyons

Percent of map unit: 1 percent
Landform: Depressions, drainageways
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Base slope
Down-slope shape: Concave
Across-slope shape: Concave
Hydric soil rating: Yes
References

Custom Soil Resource Report

APPENDIX II

CALCULATIONS & WORKSHEETS

Drainage Calculations
Area Listing (selected nodes)

<table>
<thead>
<tr>
<th>Area (sq-ft)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>309,270</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B (3S, 4S)</td>
</tr>
<tr>
<td>556,529</td>
<td>98</td>
<td>Paved parking, HSG B (1S, 3S, 4S)</td>
</tr>
<tr>
<td>837,913</td>
<td>58</td>
<td>Woods and Brush - B soil (1S)</td>
</tr>
<tr>
<td>12,722</td>
<td>60</td>
<td>Woods/Brush - B Soil (2S)</td>
</tr>
<tr>
<td>1,716,434</td>
<td>72</td>
<td>TOTAL AREA</td>
</tr>
</tbody>
</table>
Summary for Subcatchment 1S: Pre Watershed 1A

Runoff = 0.27 cfs @ 12.91 hrs, Volume= 6,479 cf, Depth= 0.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-35.00 hrs, dt= 0.01 hrs
Type II 24-hr 1 yr 24 hr Rainfall=2.15"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>34,471</td>
<td>98</td>
<td>Paved parking, HSG B</td>
</tr>
<tr>
<td>837,913</td>
<td>58</td>
<td>Woods and Brush - B soil</td>
</tr>
<tr>
<td>872,384</td>
<td>60</td>
<td>Weighted Average</td>
</tr>
<tr>
<td>837,913</td>
<td></td>
<td>96.05% Pervious Area</td>
</tr>
<tr>
<td>34,471</td>
<td></td>
<td>3.95% Impervious Area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tc (min)</th>
<th>Length (feet)</th>
<th>Slope (ft/ft)</th>
<th>Velocity (ft/sec)</th>
<th>Capacity (cfs)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1</td>
<td>100</td>
<td>0.0230</td>
<td>0.07</td>
<td></td>
<td>Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.48"</td>
</tr>
<tr>
<td>13.1</td>
<td>737</td>
<td>0.0180</td>
<td>0.94</td>
<td></td>
<td>Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subcatchment 1S: Pre Watershed 1A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrograph</td>
</tr>
<tr>
<td>Runoff=0.27 cfs @ 12.91 hrs</td>
</tr>
<tr>
<td>Type II 24-hr 1 yr 24 hr Rainfall=2.15"</td>
</tr>
<tr>
<td>Runoff Area=872,384 sf</td>
</tr>
<tr>
<td>Runoff Volume=6,479 cf</td>
</tr>
<tr>
<td>Runoff Depth=0.09"</td>
</tr>
<tr>
<td>Flow Length=837'</td>
</tr>
<tr>
<td>Tc=36.2 min</td>
</tr>
<tr>
<td>CN=60</td>
</tr>
</tbody>
</table>
Summary for Subcatchment 2S: Post Watershed 1A

Runoff = 0.00 cfs @ 12.39 hrs, Volume= 94 cf, Depth= 0.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-35.00 hrs, dt= 0.01 hrs
Type II 24-hr 1 yr 24 hr Rainfall=2.15"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 12,722</td>
<td>60</td>
<td>Woods/Brush - B Soil</td>
</tr>
<tr>
<td>12,722</td>
<td>100.00%</td>
<td>Pervious Area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tc (min)</th>
<th>Length (feet)</th>
<th>Slope (ft/ft)</th>
<th>Velocity (ft/sec)</th>
<th>Capacity (cfs)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3</td>
<td>73</td>
<td>0.1560</td>
<td>0.15</td>
<td></td>
<td>Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.48"</td>
</tr>
<tr>
<td>0.8</td>
<td>100</td>
<td>0.1560</td>
<td>1.97</td>
<td></td>
<td>Shallow Concentrated Flow, Woodland Kv= 5.0 fps</td>
</tr>
</tbody>
</table>

9.1 173 Total

Subcatchment 2S: Post Watershed 1A

Hydrograph

Runoff=0.00 cfs @ 12.39 hrs
Type II 24-hr
1 yr 24 hr Rainfall=2.15"
Runoff Area=12,722 sf
Runoff Volume=94 cf
Runoff Depth=0.09"
Flow Length=173'
Slope=0.1560 '/'
Tc=9.1 min
CN=60
Summary for Subcatchment 3S: Pre Watershed 1B1

Runoff = 15.03 cfs @ 11.99 hrs, Volume= 32,232 cf, Depth= 1.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-35.00 hrs, dt= 0.01 hrs
Type II 24-hr 1 yr 24 hr Rainfall=2.15"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>269,116</td>
<td>98</td>
<td>Paved parking, HSG B</td>
</tr>
<tr>
<td>108,482</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B</td>
</tr>
<tr>
<td>377,598</td>
<td>87</td>
<td>Weighted Average</td>
</tr>
<tr>
<td>108,482</td>
<td></td>
<td>28.73% Pervious Area</td>
</tr>
<tr>
<td>269,116</td>
<td></td>
<td>71.27% Impervious Area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tc (min)</th>
<th>Length (feet)</th>
<th>Slope (ft/ft)</th>
<th>Velocity (ft/sec)</th>
<th>Capacity (cfs)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>75</td>
<td>0.0350</td>
<td>0.18</td>
<td></td>
<td>Sheet Flow,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grass: Short n= 0.150 P2= 2.48"</td>
</tr>
<tr>
<td>0.4</td>
<td>80</td>
<td>0.0350</td>
<td>3.01</td>
<td></td>
<td>Shallow Concentrated Flow,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unpaved Kv= 16.1 fps</td>
</tr>
</tbody>
</table>

7.5 155 Total

Subcatchment 3S: Pre Watershed 1B1

Hydrograph

Runoff=15.03 cfs @ 11.99 hrs
Type II 24-hr
1 yr 24 hr Rainfall=2.15"
Runoff Area=377,598 sf
Runoff Volume=32,232 cf
Runoff Depth=1.02"
Flow Length=155'
Slope=0.0350 '/'
Tc=7.5 min
CN=87
Summary for Subcatchment 4S: Pre Watershed 1B2

Runoff = 11.86 cfs @ 12.02 hrs, Volume= 28,337 cf, Depth= 0.75"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-35.00 hrs, dt= 0.01 hrs
Type II 24-hr 1 yr 24 hr Rainfall=2.15"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>252,942</td>
<td>98</td>
<td>Paved parking, HSG B</td>
</tr>
<tr>
<td>200,788</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B</td>
</tr>
<tr>
<td>453,730</td>
<td>82</td>
<td>Weighted Average</td>
</tr>
<tr>
<td>200,788</td>
<td>44</td>
<td>44.25% Pervious Area</td>
</tr>
<tr>
<td>252,942</td>
<td>55</td>
<td>55.75% Impervious Area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tc</th>
<th>Length</th>
<th>Slope</th>
<th>Velocity</th>
<th>Capacity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.9</td>
<td>100</td>
<td>0.0350</td>
<td>0.19</td>
<td></td>
<td>Sheet Flow,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grass: Short n= 0.150 P2= 2.48"</td>
</tr>
<tr>
<td>1.1</td>
<td>200</td>
<td>0.0330</td>
<td>2.92</td>
<td></td>
<td>Shallow Concentrated Flow,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unpaved Kv= 16.1 fps</td>
</tr>
</tbody>
</table>

Subcatchment 4S: Pre Watershed 1B2

Hydrograph

Runoff=11.86 cfs @ 12.02 hrs
Type II 24-hr
1 yr 24 hr Rainfall=2.15"
Runoff Area=453,730 sf
Runoff Volume=28,337 cf
Runoff Depth=0.75"
Flow Length=300'
Tc=10.0 min
CN=82
Summary for Pond 5P: Pond 1&2

Inflow Area = 377,598 sf, 71.27% Impervious, Inflow Depth = 1.02" for 1 yr 24 hr event
Inflow = 15.03 cfs @ 11.99 hrs, Volume= 32,232 cf
Outflow = 0.51 cfs @ 14.26 hrs, Volume= 30,598 cf, Atten= 97%, Lag= 135.9 min
Primary = 0.51 cfs @ 14.26 hrs, Volume= 30,598 cf

Routing by Stor-Ind method, Time Span= 0.00-35.00 hrs, dt= 0.01 hrs
Peak Elev= 689.61' @ 14.26 hrs Surf.Area= 15,263 sf Storage= 18,704 cf

Plug-Flow detention time= 460.2 min calculated for 30,598 cf (95% of inflow)
Center-of-Mass det. time= 431.7 min (1,266.8 - 835.1)

<table>
<thead>
<tr>
<th>Volume</th>
<th>Invert</th>
<th>Avail.Storage</th>
<th>Storage Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>688.00'</td>
<td>42,308 cf</td>
<td>Custom Stage Data (Prismatic) Listed below (Recalc)</td>
</tr>
<tr>
<td>#2</td>
<td>688.00'</td>
<td>54,178 cf</td>
<td>Custom Stage Data (Prismatic) Listed below (Recalc)</td>
</tr>
</tbody>
</table>

96,485 cf Total Available Storage

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>688.00</td>
<td>3,413</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>693.00</td>
<td>13,510</td>
<td>42,308</td>
<td>42,308</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>688.00</td>
<td>4,495</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>693.00</td>
<td>17,176</td>
<td>54,178</td>
<td>54,178</td>
</tr>
</tbody>
</table>

Device Routing Invert Outlet Devices
#1 Primary 692.00' 10.0' long Broad-Crested Rectangular Weir
Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
2.50 3.00 3.50 4.00 4.50 5.00 5.50
Coeff. (English) 2.37 2.51 2.70 2.68 2.65 2.65 2.65 2.65 2.65 2.65
2.65 2.66 2.66 2.67 2.67 2.69 2.72 2.76 2.83

#2 Device 4 688.00' 4.0" Vert. Orifice/Grate C= 0.600

#3 Device 4 690.00' 6.0" Vert. Orifice/Grate C= 0.600

#4 Primary 688.00' 10.0" Round Culvert
L = 20.0' CPP, square edge headwall, Ke = 0.500
Inlet / Outlet Invert= 688.00' / 687.90' S= 0.0050 '/' Cc = 0.900
n = 0.020 Corrugated PE, corrugated interior, Flow Area= 0.55 sf

Primary OutFlow Max=0.51 cfs @ 14.26 hrs HW=689.61' (Free Discharge)
1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)
4=Culvert (Passes 0.51 cfs of 2.23 cfs potential flow)
2=Orifice/Grate (Orifice Controls 0.51 cfs @ 5.79 fps)
3=Orifice/Grate (Controls 0.00 cfs)
Pond 5P: Pond 1&2

Hydrograph

- **Inflow Area**: 377,598 sf
- **Inflow**: 15.03 cfs @ 11.99 hrs
- **Primary**: 0.51 cfs @ 14.26 hrs
- **Peak Elev**: 689.61'
- **Storage**: 18,704 cf

Stage-Discharge

- **Broad-Crested Rectangular Weir**
- **Orifice/Grate**
- **Orifice/Grate + Culvert**
Pond 5P: Pond 1&2

Stage-Area-Storage

Custom Stage Data + Custom Stage Data

Storage (cubic-feet)

Elevation (feet)
Summary for Pond 6P: Pond 3&4

Inflow Area = 453,730 sf, 55.75% Impervious, Inflow Depth = 0.75" for 1 yr 24 hr event

Inflow = 11.86 cfs @ 12.02 hrs, Volume= 28,337 cf
Outflow = 0.42 cfs @ 15.16 hrs, Volume= 26,236 cf, Atten= 96%, Lag= 188.0 min
Primary = 0.42 cfs @ 15.16 hrs, Volume= 26,236 cf

Routing by Stor-Ind method, Time Span= 0.00-35.00 hrs, dt= 0.01 hrs
Peak Elev= 675.19' @ 15.16 hrs Surf.Area= 16,853 sf Storage= 15,805 cf

Plug-Flow detention time= 466.7 min calculated for 26,229 cf (93% of inflow)
Center-of-Mass det. time= 427.3 min (1,285.3 - 857.9)

Volume Invert Avail.Storage Storage Description
#1 674.00' 41,796 cf Custom Stage Data (Prismatic) Listed below (Recalc)
#2 674.00' 44,958 cf Custom Stage Data (Prismatic) Listed below (Recalc)

86,754 cf Total Available Storage

Elevation Surf.Area Inc.Store Cum.Store
(steel) (sq-ft) (cubic-feet) (cubic-feet)
674.00 6,253 0 0
678.00 14,645 41,796 41,796

Elevation Surf.Area Inc.Store Cum.Store
(steel) (sq-ft) (cubic-feet) (cubic-feet)
674.00 3,569 0 0
678.00 18,910 44,958 44,958

Device Routing Invert Outlet Devices
#1 Device 4 674.00’ 4.0” Vert. Orifice/Grate C= 0.600
#2 Device 4 675.50’ 6.0” Vert. Orifice/Grate C= 0.600
#3 Device 4 677.00’ 24.0” x 24.0” Horiz. Orifice/Grate C= 0.600
Limited to weir flow at low heads
#4 Primary 674.00’ 18.0” Round Culvert
L= 50.0’ CPP, square edge headwall, Ke= 0.500
Inlet / Outlet Invert= 674.00’ / 673.75’ S= 0.0050 '/' Cc= 0.900
n= 0.020 Corrugated PE, corrugated interior, Flow Area= 1.77 sf

Primary OutFlow Max=0.42 cfs @ 15.16 hrs HW=675.19’ (Free Discharge)
4=Culvert (Passes 0.42 cfs of 3.51 cfs potential flow)
1=Orifice/Grate (Orifice Controls 0.42 cfs @ 4.86 fps)
2=Orifice/Grate (Controls 0.00 cfs)
3=Orifice/Grate (Controls 0.00 cfs)
Inflow Hydrograph

- **Inflow Area**: 453,730 sf
- **Inflow**: 11.86 cfs @ 12.02 hrs
- **Primary**: 0.42 cfs @ 15.16 hrs
- **Peak Elev**: 675.19'
- **Storage**: 15,805 cf

Stage-Discharge

- **Orifice/Grate**:
 - Elev: 674
 - Discharge: 0-12 cfs
Pond 6P: Pond 3&4

Stage-Area-Storage

Storage (cubic-feet)

Elevation (feet)

Custom Stage Data + Custom Stage Data

Storage
Summary for Subcatchment 1S: Pre Watershed 1A

Runoff = 5.63 cfs @ 12.42 hrs, Volume= 39,578 cf, Depth= 0.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-35.00 hrs, dt= 0.01 hrs
Type II 24-hr 10 yr 24 hr Rainfall=3.53"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>34,471</td>
<td>98</td>
<td>Paved parking, HSG B</td>
</tr>
<tr>
<td>837,913</td>
<td>58</td>
<td>Woods and Brush - B soil</td>
</tr>
<tr>
<td>872,384</td>
<td>60</td>
<td>Weighted Average</td>
</tr>
<tr>
<td>837,913</td>
<td>96.05%</td>
<td>Pervious Area</td>
</tr>
<tr>
<td>34,471</td>
<td>3.95%</td>
<td>Impervious Area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tc (min)</th>
<th>Length (feet)</th>
<th>Slope (ft/ft)</th>
<th>Velocity (ft/sec)</th>
<th>Capacity (cfs)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1</td>
<td>100</td>
<td>0.0230</td>
<td>0.07</td>
<td></td>
<td>Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.48"</td>
</tr>
<tr>
<td>13.1</td>
<td>737</td>
<td>0.0180</td>
<td>0.94</td>
<td></td>
<td>Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps</td>
</tr>
<tr>
<td>36.2</td>
<td>837</td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

Subcatchment 1S: Pre Watershed 1A

Runoff=5.63 cfs @ 12.42 hrs
Type II 24-hr 10 yr 24 hr Rainfall=3.53"
Runoff Area=872,384 sf
Runoff Volume=39,578 cf
Runoff Depth=0.54"
Flow Length=837'
Tc=36.2 min
CN=60
Summary for Subcatchment 2S: Post Watershed 1A

Runoff = 0.20 cfs @ 12.03 hrs, Volume= 577 cf, Depth= 0.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-35.00 hrs, dt= 0.01 hrs
Type II 24-hr 10 yr 24 hr Rainfall=3.53"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 12,722</td>
<td>60</td>
<td>Woods/Brush - B Soil</td>
</tr>
<tr>
<td>12,722</td>
<td>100</td>
<td>100.00% Pervious Area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tc (min)</th>
<th>Length (feet)</th>
<th>Slope (ft/ft)</th>
<th>Velocity (ft/sec)</th>
<th>Capacity (cfs)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3</td>
<td>73</td>
<td>0.1560</td>
<td>0.15</td>
<td></td>
<td>Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.48"</td>
</tr>
<tr>
<td>0.8</td>
<td>100</td>
<td>0.1560</td>
<td>1.97</td>
<td></td>
<td>Shallow Concentrated Flow, Woodland Kv= 5.0 fps</td>
</tr>
<tr>
<td>9.1</td>
<td>173</td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

Subcatchment 2S: Post Watershed 1A

Runoff=0.20 cfs @ 12.03 hrs
Type II 24-hr
10 yr 24 hr Rainfall=3.53"
Runoff Area=12,722 sf
Runoff Volume=577 cf
Runoff Depth=0.54"
Flow Length=173'
Slope=0.1560 '/'
Tc=9.1 min
CN=60
Summary for Subcatchment 3S: Pre Watershed 1B1

Runoff = 31.79 cfs @ 11.99 hrs, Volume = 69,522 cf, Depth = 2.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span = 0.00-35.00 hrs, dt= 0.01 hrs
Type II 24-hr 10 yr 24 hr Rainfall=3.53"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>269,116</td>
<td>98</td>
<td>Paved parking, HSG B</td>
</tr>
<tr>
<td>108,482</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B</td>
</tr>
<tr>
<td>377,598</td>
<td>87</td>
<td>Weighted Average</td>
</tr>
<tr>
<td>108,482</td>
<td>28.73% Pervious Area</td>
<td></td>
</tr>
<tr>
<td>269,116</td>
<td>71.27% Impervious Area</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tc (min)</th>
<th>Length (feet)</th>
<th>Slope (ft/ft)</th>
<th>Velocity (ft/sec)</th>
<th>Capacity (cfs)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>75</td>
<td>0.0350</td>
<td>0.18</td>
<td></td>
<td>Sheet Flow,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grass: Short n= 0.150 P2= 2.48"</td>
</tr>
<tr>
<td>0.4</td>
<td>80</td>
<td>0.0350</td>
<td>3.01</td>
<td></td>
<td>Shallow Concentrated Flow,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unpaved Kv= 16.1 fps</td>
</tr>
<tr>
<td>7.5</td>
<td>155</td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

Subcatchment 3S: Pre Watershed 1B1

Runoff=31.79 cfs @ 11.99 hrs
Type II 24-hr
10 yr 24 hr Rainfall=3.53"
Runoff Area=377,598 sf
Runoff Volume=69,522 cf
Runoff Depth=2.21"
Flow Length=155'
Slope=0.0350 '/'
Tc=7.5 min
CN=87
Summary for Subcatchment 4S: Pre Watershed 1B2

Runoff = 29.01 cfs @ 12.02 hrs, Volume= 68,340 cf, Depth= 1.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-35.00 hrs, dt= 0.01 hrs
Type II 24-hr 10 yr 24 hr Rainfall=3.53"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>252,942</td>
<td>98</td>
<td>Paved parking, HSG B</td>
</tr>
<tr>
<td>200,788</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B</td>
</tr>
<tr>
<td>453,730</td>
<td>82</td>
<td>Weighted Average</td>
</tr>
<tr>
<td>200,788</td>
<td>44.25%</td>
<td>Pervious Area</td>
</tr>
<tr>
<td>252,942</td>
<td>55.75%</td>
<td>Impervious Area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tc (min)</th>
<th>Length (feet)</th>
<th>Slope (ft/ft)</th>
<th>Velocity (ft/sec)</th>
<th>Capacity (cfs)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.9</td>
<td>100</td>
<td>0.0350</td>
<td>0.19</td>
<td></td>
<td>Sheet Flow, Grass: Short n= 0.150 P2= 2.48"</td>
</tr>
<tr>
<td>1.1</td>
<td>200</td>
<td>0.0330</td>
<td>2.92</td>
<td></td>
<td>Shallow Concentrated Flow, Unpaved Kv= 16.1 fps</td>
</tr>
<tr>
<td>10.0</td>
<td>300</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subcatchment 4S: Pre Watershed 1B2

Hydrograph

Runoff=29.01 cfs @ 12.02 hrs
Type II 24-hr
10 yr 24 hr Rainfall=3.53"
Runoff Area=453,730 sf
Runoff Volume=68,340 cf
Runoff Depth=1.81"
Flow Length=300'
Tc=10.0 min
CN=82
Summary for Pond 5P: Pond 1&2

Inflow Area = 377,598 sf, 71.27% Impervious, Inflow Depth = 2.21" for 10 yr 24 hr event
Inflow = 31.79 cfs @ 11.99 hrs, Volume= 69,522 cf
Outflow = 1.40 cfs @ 13.41 hrs, Volume= 62,456 cf, Atten= 96%, Lag= 85.2 min
Primary = 1.40 cfs @ 13.41 hrs, Volume= 62,456 cf

Routing by Stor-Ind method, Time Span= 0.00-35.00 hrs, dt= 0.01 hrs
Peak Elev= 690.82' @ 13.41 hrs Surf.Area= 20,767 sf Storage= 40,470 cf
Plug-Flow detention time= 454.9 min calculated for 62,456 cf (90% of inflow)
Center-of-Mass det. time= 403.2 min (1,216.3 - 813.1)

<table>
<thead>
<tr>
<th>Volume</th>
<th>Invert</th>
<th>Avail.Storage</th>
<th>Storage Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>688.00'</td>
<td>42,308 cf</td>
<td>Custom Stage Data (Prismatic) Listed below (Recalc)</td>
</tr>
<tr>
<td>#2</td>
<td>688.00'</td>
<td>54,178 cf</td>
<td>Custom Stage Data (Prismatic) Listed below (Recalc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>96,485 cf</td>
<td>Total Available Storage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>688.00</td>
<td>3,413</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>693.00</td>
<td>13,510</td>
<td>42,308</td>
<td>42,308</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>688.00</td>
<td>4,495</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>693.00</td>
<td>17,176</td>
<td>54,178</td>
<td>54,178</td>
</tr>
</tbody>
</table>

Device Routing Invert Outlet Devices
#1 Primary 692.00' **10.0' long Broad-Crested Rectangular Weir**
Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
2.50 3.00 3.50 4.00 4.50 5.00 5.50
Coef. (English) 2.37 2.51 2.70 2.68 2.68 2.67 2.65 2.65 2.65
2.65 2.66 2.66 2.67 2.69 2.72 2.76 2.83

#2 Device 4 688.00' **4.0" Vert. Orifice/Grate** C= 0.600
#3 Device 4 690.00' **6.0" Vert. Orifice/Grate** C= 0.600
#4 Primary 688.00' **10.0" Round Culvert**
L= 20.0' CPP, square edge headwall, Ke= 0.500
Inlet / Outlet Invert= 688.00' / 687.90' S= 0.0050 '/' Cc= 0.900
n= 0.020 Corrugated PE, corrugated interior, Flow Area= 0.55 sf

Primary OutFlow Max=1.40 cfs @ 13.41 hrs HW=690.82' (Free Discharge)
1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)
4=Culvert (Passes 1.40 cfs of 3.43 cfs potential flow)
2=Orifice/Grate (Orifice Controls 0.68 cfs @ 7.85 fps)
3=Orifice/Grate (Orifice Controls 0.72 cfs @ 3.64 fps)
Pond 5P: Pond 1&2

Inflow Area=377,598 sf
Inflow=31.79 cfs @ 11.99 hrs
Primary=1.40 cfs @ 13.41 hrs
Peak Elev=690.82'
Storage=40,470 cf

Pond 5P: Pond 1&2

Stage-Discharge

Broad-Crested Rectangular Weir
Orifice/Grate
Orifice/Grate + Culvert
Pond 5P: Pond 1&2

Stage-Area-Storage

Elevation (feet)

Storage (cubic-feet)

Custom Stage Data + Custom Stage Data

Storage
Summary for Pond 6P: Pond 3&4

Inflow Area = 453,730 sf, 55.75% Impervious, Inflow Depth = 1.81" for 10 yr 24 hr event
Inflow = 29.01 cfs @ 12.02 hrs, Volume= 68,340 cf
Outflow = 1.33 cfs @ 13.68 hrs, Volume= 60,478 cf, Atten= 95%, Lag= 99.6 min
Primary = 1.33 cfs @ 13.68 hrs, Volume= 60,478 cf

Routing by Stor-Ind method, Time Span= 0.00-35.00 hrs, dt= 0.01 hrs
Peak Elev= 676.32' @ 13.68 hrs Surf.Area= 23,609 sf Storage= 38,840 cf

Plug-Flow detention time= 442.8 min calculated for 60,460 cf (88% of inflow)
Center-of-Mass det. time= 385.9 min (1,218.0 - 832.1)

<table>
<thead>
<tr>
<th>Volume</th>
<th>Invert</th>
<th>Avail.Storage</th>
<th>Storage Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>674.00'</td>
<td>41,796 cf</td>
<td>Custom Stage Data (Prismatic) Listed below (Recalc)</td>
</tr>
<tr>
<td>#2</td>
<td>674.00'</td>
<td>44,958 cf</td>
<td>Custom Stage Data (Prismatic) Listed below (Recalc)</td>
</tr>
</tbody>
</table>

86,754 cf Total Available Storage

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>674.00</td>
<td>6,253</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>678.00</td>
<td>14,645</td>
<td>41,796</td>
<td>41,796</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>674.00</td>
<td>3,569</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>678.00</td>
<td>18,910</td>
<td>44,958</td>
<td>44,958</td>
</tr>
</tbody>
</table>

Device Routing Invert Outlet Devices

#1	Device 4	674.00'	**4.0" Vert. Orifice/Grate** C= 0.600
#2	Device 4	675.50'	**6.0" Vert. Orifice/Grate** C= 0.600
#3	Device 4	677.00'	**24.0" x 24.0" Horiz. Orifice/Grate** C= 0.600
#4	Primary	674.00'	**18.0" Round Culvert** L= 50.0' CPP, square edge headwall, Ke= 0.500
			Limited to weir flow at low heads
			Inlet / Outlet Invert= 674.00'/ 673.75' S= 0.0050 '/' Cc= 0.900
			n= 0.020 Corrugated PE, corrugated interior, Flow Area= 1.77 sf

Primary OutFlow Max=1.33 cfs @ 13.68 hrs HW=676.32' (Free Discharge)

1=Culvert (Passes 1.33 cfs of 7.68 cfs potential flow)
2=Orifice/Grate (Orifice Controls 0.62 cfs @ 7.07 fps)
3=Orifice/Grate (Orifice Controls 0.72 cfs @ 3.65 fps)
4=Orifice/Grate (Controls 0.00 cfs)
Pond 6P: Pond 3&4

Inflow

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>Flow (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>22</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>26</td>
<td>28</td>
</tr>
<tr>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>28</td>
<td>32</td>
</tr>
</tbody>
</table>

Inflow Area=453,730 sf
Inflow=29.01 cfs @ 12.02 hrs
Primary=1.33 cfs @ 13.68 hrs
Peak Elev=676.32'
Storage=38,840 cf

Stage-Discharge

<table>
<thead>
<tr>
<th>Elevation (feet)</th>
<th>Discharge (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>674</td>
<td></td>
</tr>
<tr>
<td>675</td>
<td></td>
</tr>
<tr>
<td>676</td>
<td>2</td>
</tr>
<tr>
<td>677</td>
<td>4</td>
</tr>
<tr>
<td>678</td>
<td>6</td>
</tr>
</tbody>
</table>

Orifice/Grate + Culvert
Orifice/Grate
Pond 6P: Pond 3&4

Stage-Area-Storage

Elevation (feet)

Custom Stage Data + Custom Stage Data

Storage (cubic-feet)
Summary for Subcatchment 1S: Pre Watershed 1A

Runoff = 25.90 cfs @ 12.35 hrs, Volume = 133,553 cf, Depth = 1.84"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span = 0.00-35.00 hrs, dt = 0.01 hrs
Type II 24-hr 100 yr 24 hr Rainfall = 5.87"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>34,471</td>
<td>98</td>
<td>Paved parking, HSG B</td>
</tr>
<tr>
<td>837,913</td>
<td>58</td>
<td>Woods and Brush - B soil</td>
</tr>
<tr>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>872,384</td>
<td>60</td>
<td>Weighted Average</td>
</tr>
<tr>
<td>837,913</td>
<td>96.05%</td>
<td>Pervious Area</td>
</tr>
<tr>
<td>34,471</td>
<td>3.95%</td>
<td>Impervious Area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tc (min)</th>
<th>Length (feet)</th>
<th>Slope (ft/ft)</th>
<th>Velocity (ft/sec)</th>
<th>Capacity (cfs)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1</td>
<td>100</td>
<td>0.0230</td>
<td>0.07</td>
<td></td>
<td>Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.48"</td>
</tr>
<tr>
<td>13.1</td>
<td>737</td>
<td>0.0180</td>
<td>0.94</td>
<td></td>
<td>Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps</td>
</tr>
</tbody>
</table>

36.2 837 Total

Subcatchment 1S: Pre Watershed 1A

Hydrograph

Runoff=25.90 cfs @ 12.35 hrs
Type II 24-hr
100 yr 24 hr Rainfall = 5.87"
Runoff Area = 872,384 sf
Runoff Volume = 133,553 cf
Runoff Depth = 1.84"
Flow Length = 837'
Tc = 36.2 min
CN = 60
Summary for Subcatchment 2S: Post Watershed 1A

Runoff = 0.84 cfs @ 12.02 hrs, Volume = 1,948 cf, Depth = 1.84"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span = 0.00-35.00 hrs, dt = 0.01 hrs
Type II 24-hr 100 yr 24 hr Rainfall=5.87"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12,722</td>
<td>60</td>
<td>Woods/Brush - B Soil</td>
</tr>
<tr>
<td>12,722</td>
<td>100</td>
<td>100.00% Pervious Area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tc (min)</th>
<th>Length (feet)</th>
<th>Slope (ft/ft)</th>
<th>Velocity (ft/sec)</th>
<th>Capacity (cfs)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3</td>
<td>73</td>
<td>0.1560</td>
<td>0.15</td>
<td></td>
<td>Sheet Flow, Woods: Light underbrush n=0.400 P2=2.48"</td>
</tr>
<tr>
<td>0.8</td>
<td>100</td>
<td>0.1560</td>
<td>1.97</td>
<td></td>
<td>Shallow Concentrated Flow, Woodland Kv=5.0 fps</td>
</tr>
</tbody>
</table>

9.1 173 Total

Subcatchment 2S: Post Watershed 1A

Hydrograph

Runoff=0.84 cfs @ 12.02 hrs
Type II 24-hr
100 yr 24 hr Rainfall=5.87"
Runoff Area=12,722 sf
Runoff Volume=1,948 cf
Runoff Depth=1.84"
Flow Length=173'
Slope=0.1560 '/'
Tc=9.1 min
CN=60
Summary for Subcatchment 3S: Pre Watershed 1B1

Runoff = 60.97 cfs @ 11.99 hrs, Volume = 138,230 cf, Depth = 4.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span = 0.00-35.00 hrs, dt = 0.01 hrs
Type II 24-hr 100 yr 24 hr Rainfall = 5.87"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>269,116</td>
<td>98</td>
<td>Paved parking, HSG B</td>
</tr>
<tr>
<td>108,482</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B</td>
</tr>
<tr>
<td>377,598</td>
<td>87</td>
<td>Weighted Average</td>
</tr>
<tr>
<td>108,482</td>
<td></td>
<td>28.73% Pervious Area</td>
</tr>
<tr>
<td>269,116</td>
<td></td>
<td>71.27% Impervious Area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tc (min)</th>
<th>Length (feet)</th>
<th>Slope (ft/ft)</th>
<th>Velocity (ft/sec)</th>
<th>Capacity (cfs)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>75</td>
<td>0.0350</td>
<td>0.18</td>
<td></td>
<td>Sheet Flow, Grass: Short n = 0.150 P2 = 2.48"</td>
</tr>
<tr>
<td>0.4</td>
<td>80</td>
<td>0.0350</td>
<td>3.01</td>
<td></td>
<td>Shallow Concentrated Flow, Unpaved Kv = 16.1 fps</td>
</tr>
<tr>
<td>7.5</td>
<td>155</td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

Subcatchment 3S: Pre Watershed 1B1

Hydrograph

Runoff = 60.97 cfs @ 11.99 hrs
Type II 24-hr
100 yr 24 hr Rainfall = 5.87"" Runoff Area = 377,598 sf
Runoff Volume = 138,230 cf
Runoff Depth = 4.39"
Flow Length = 155'
Slope = 0.0350 '/'
Tc = 7.5 min
CN = 87
Summary for Subcatchment 4S: Pre Watershed 1B2

Runoff = 60.89 cfs @ 12.01 hrs, Volume= 146,241 cf, Depth= 3.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-35.00 hrs, dt= 0.01 hrs
Type II 24-hr 100 yr 24 hr Rainfall=5.87"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>252,942</td>
<td>98</td>
<td>Paved parking, HSG B</td>
</tr>
<tr>
<td>200,788</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B</td>
</tr>
<tr>
<td>453,730</td>
<td>82</td>
<td>Weighted Average</td>
</tr>
<tr>
<td>200,788</td>
<td>44.25% Pervious Area</td>
<td></td>
</tr>
<tr>
<td>252,942</td>
<td>55.75% Impervious Area</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tc (min)</th>
<th>Length (feet)</th>
<th>Slope (ft/ft)</th>
<th>Velocity (ft/sec)</th>
<th>Capacity (cfs)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.9</td>
<td>100</td>
<td>0.0350</td>
<td>0.19</td>
<td></td>
<td>Sheet Flow,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grass: Short n= 0.150 P2= 2.48"</td>
</tr>
<tr>
<td>1.1</td>
<td>200</td>
<td>0.0330</td>
<td>2.92</td>
<td></td>
<td>Shallow Concentrated Flow,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unpaved Kv= 16.1 fps</td>
</tr>
</tbody>
</table>

Subcatchment 4S: Pre Watershed 1B2

Hydrograph

Runoff=60.89 cfs @ 12.01 hrs
Type II 24-hr
100 yr 24 hr Rainfall=5.87"
Runoff Area=453,730 sf
Runoff Volume=146,241 cf
Runoff Depth=3.87"
Flow Length=300'
Tc=10.0 min
CN=82
Summary for Pond 5P: Pond 1&2

Inflow Area = 377,598 sf, 71.27% Impervious, Inflow Depth = 4.39" for 100 yr 24 hr event
Inflow = 60.97 cfs @ 11.99 hrs, Volume = 138,230 cf
Outflow = 6.29 cfs @ 12.42 hrs, Volume = 125,564 cf, Attenu = 90%, Lag = 25.7 min
Primary = 6.29 cfs @ 12.42 hrs, Volume = 125,564 cf

Routing by Stor-Ind method, Time Span = 0.00-35.00 hrs, dt = 0.01 hrs
Peak Elev = 692.30' @ 12.42 hrs Surf.Area = 27,511 sf Storage = 76,206 cf

Plug-Flow detention time = 385.0 min calculated for 125,528 cf (91% of inflow)
Center-of-Mass det. time = 337.3 min (1,130.9 - 793.6)

Volume, Invert, Avail.Storage, Storage Description

<table>
<thead>
<tr>
<th></th>
<th>Invert</th>
<th>Avail.Storage</th>
<th>Storage Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>688.00'</td>
<td>42,308 cf</td>
<td>Custom Stage Data (Prismatic) Listed below (Recalc)</td>
</tr>
<tr>
<td>#2</td>
<td>688.00'</td>
<td>54,178 cf</td>
<td>Custom Stage Data (Prismatic) Listed below (Recalc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>96,485 cf</td>
<td>Total Available Storage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>688.00</td>
<td>3,413</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>693.00</td>
<td>13,510</td>
<td>42,308</td>
<td>42,308</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>688.00</td>
<td>4,495</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>693.00</td>
<td>17,176</td>
<td>54,178</td>
<td>54,178</td>
</tr>
</tbody>
</table>

Device, Routing, Invert, Outlet Devices

<table>
<thead>
<tr>
<th>Device</th>
<th>Routing</th>
<th>Invert</th>
<th>Outlet Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Primary</td>
<td>692.00'</td>
<td>10.0' long Broad-Crested Rectangular Weir</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.50 3.00 3.50 4.00 4.50 5.00 5.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Coef. (English) 2.37 2.51 2.70 2.68 2.67 2.65 2.65 2.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.65 2.66 2.66 2.67 2.69 2.72 2.76 2.83</td>
</tr>
<tr>
<td>#2</td>
<td>Device 4</td>
<td>688.00'</td>
<td>4.0" Vert. Orifice/Grate C= 0.600</td>
</tr>
<tr>
<td>#3</td>
<td>Device 4</td>
<td>690.00'</td>
<td>6.0" Vert. Orifice/Grate C= 0.600</td>
</tr>
<tr>
<td>#4</td>
<td>Primary</td>
<td>688.00'</td>
<td>10.0" Round Culvert</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L= 20.0' CPP, square edge headwall, Ke= 0.500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inlet / Outlet Invert= 688.00' / 687.90' S= 0.0050 '" Cc= 0.900</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>n= 0.020 Corrugated PE, corrugated interior, Flow Area= 0.55 sf</td>
</tr>
</tbody>
</table>

Primary OutFlow Max=6.28 cfs @ 12.42 hrs HW=692.30' (Free Discharge)
1=Broad-Crested Rectangular Weir (Weir Controls 4.07 cfs @ 1.34 fps)
4=Culvert (Passes 2.21 cfs of 4.49 cfs potential flow)
2=Orifice/Grate (Orifice Controls 0.85 cfs @ 9.79 fps)
3=Orifice/Grate (Orifice Controls 1.35 cfs @ 6.90 fps)
Pond 5P: Pond 1&2

Hydrograph

- Inflow Area = 377,598 sf
- Inflow = 60.97 cfs @ 11.99 hrs
- Primary = 6.29 cfs @ 12.42 hrs
- Peak Elev = 692.30'
- Storage = 76,206 cf

Stage-Discharge

- Broad-Crested Rectangular Weir
- Orifice/Grate
- Orifice/Grate + Culvert
Judd Road
Type II 24-hr 100 yr 24 hr Rainfall=5.87"

Pond 5P: Pond 1&2

Stage-Area-Storage

Custom Stage Data + Custom Stage Data

Storage (cubic-feet)

Elevation (feet)
Summary for Pond 6P: Pond 3&4

Inflow Area = 453,730 sf, 55.75% Impervious, Inflow Depth = 3.87" for 100 yr 24 hr event
Inflow = 60.89 cfs @ 12.01 hrs, Volume= 146,241 cf
Outflow = 11.25 cfs @ 12.28 hrs, Volume= 133,675 cf, Atten= 82%, Lag= 16.1 min
Primary = 11.25 cfs @ 12.28 hrs, Volume= 133,675 cf

Routing by Stor-Ind method, Time Span= 0.00-35.00 hrs, dt= 0.01 hrs
Peak Elev= 677.56' @ 12.28 hrs Surf.Area= 30,916 sf Storage= 72,416 cf

Plug-Flow detention time= 322.5 min calculated for 133,675 cf (91% of inflow)
Center-of-Mass det. time= 277.2 min (1,087.6 - 810.4)

<table>
<thead>
<tr>
<th>Volume</th>
<th>Invert</th>
<th>Avail.Storage</th>
<th>Storage Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>674.00'</td>
<td>41,796 cf</td>
<td>Custom Stage Data (Prismatic) Listed below (Recalc)</td>
</tr>
<tr>
<td>#2</td>
<td>674.00'</td>
<td>44,958 cf</td>
<td>Custom Stage Data (Prismatic) Listed below (Recalc)</td>
</tr>
</tbody>
</table>

86,754 cf Total Available Storage

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>674.00</td>
<td>6,253</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>678.00</td>
<td>14,645</td>
<td>41,796</td>
<td>41,796</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>674.00</td>
<td>3,569</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>678.00</td>
<td>18,910</td>
<td>44,958</td>
<td>44,958</td>
</tr>
</tbody>
</table>

Device Routing Invert Outlet Devices

#1 Device 4 674.00' 4.0" Vert. Orifice/Grate C= 0.600
#2 Device 4 675.50' 6.0" Vert. Orifice/Grate C= 0.600
#3 Device 4 677.00' 24.0" x 24.0" Horiz. Orifice/Grate C= 0.600

Limited to weir flow at low heads

#4 Primary 674.00' 18.0" Round Culvert
L= 50.0' CPP, square edge headwall, Ke= 0.500
Inlet / Outlet Invert= 674.00' / 673.75' S= 0.0050 '/' Cc= 0.900
n= 0.020 Corrugated PE, corrugated interior, Flow Area= 1.77 sf

Primary OutFlow Max=11.25 cfs @ 12.28 hrs HW=677.56' (Free Discharge)
4=Culvert (Barrel Controls 11.25 cfs @ 6.37 fps)
1=Orifice/Grate (Passes < 0.77 cfs potential flow)
2=Orifice/Grate (Passes < 1.27 cfs potential flow)
3=Orifice/Grate (Passes < 10.82 cfs potential flow)
Pond 6P: Pond 3&4

Hydrograph

- Inflow Area = 453,730 sf
- Inflow = 60.89 cfs @ 12.01 hrs
- Primary = 11.25 cfs @ 12.28 hrs
- Peak Elev = 677.56'
- Storage = 72,416 cf

Stage-Discharge

- Orifice/Grate
- Orifice/Grate + Culvert

Pond 6P: Pond 3&4
Pond 6P: Pond 3&4

Stage-Area-Storage

Elevation (feet)

Storage (cubic-feet)

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000

674 675 676 677 678

Custom Stage Data + Custom Stage Data

Storage